Keyword Weight Propagation for Indexing Structured Web Content

Jong Wook Kim, and K. Selcuk Candan

Comp. Sci. and Eng. Dept Arizona State University {jong, candan}@asu.edu

Table

- Motivation
- □ Approach
- Related Work
- **Relative Content of Entries**
- **Given Content** Keyword Propagation
 - **C** Keyword Propagation between a Pair of Entries
 - □ Keyword Propagation across a Complex Structure
- **Experiment**
- **Conclusion and Future Work**

Many web sites and portals organize content in a navigation hierarchy

Many web sites and portals organize content in a navigation hierarchy

Many web sites and portals organize content in a navigation hierarchy

□ A navigation hierarchy

□ Effective when browsing to find a specific content

Semantic relationships between the data contents Generalization/ Specialization

Keyword contents of the intermediate nodes may describe their content in the hierarchy ambiguously

The Yahoo CS hierarchy

In a navigational hierarchy, keyword searchs are usually directed

□ to the root of the hierarchy, or ☆ Undesirable topic drift

□ to the leaves

A May not be enough to satisfy the query

It is important for individual nodes to be properly indexed

Table

- Motivation
- > Approach
- Related Work
- **Relative Content of Entries**
- **Given Content** Keyword Propagation
 - **C** Keyword Propagation between a Pair of Entries
 - □ Keyword Propagation across a Complex Structure
- **Experiment**
- **Conclusion and Future Work**

Approach

□ Keyword and keyword weight propagation

Enrich the individual nodes with the contents of the neighboring nodes

□ How to decide what to propagate and how much?

□ The original semantic structure should be preserved ☆ Generalization/ Specialization

□ Challenge

- How to represent the semantic structure (i.e., generalization/ specialization) between nodes?
- □ How to determine the degree of keyword inheritance?

Approach

Contributions of the Paper

Develop a method for discovering and quantifying the generalization/ specialization relationship between entries in a navigation hierarchy

Develop a keyword propagation algorithm using this relationship

Table

- Motivation
- □ Approach
- Related Work
- **Relative Content of Entries**
- **Given Content** Keyword Propagation
 - **C** Keyword Propagation between a Pair of Entries
 - □ Keyword Propagation across a Complex Structure
- **Experiment**
- **Conclusion and Future Work**

Related Work

□ Score and Keyword Frequency Propagation

- □ Propagate the relevance score [Shakery, and Zhai, TREC'03]
- Propagate the term frequency value [Savoy et al. JASIS'97] [Song et al. TREC'04]
- Propagate the relevance score and the term frequency value [Qin et al. SIGIR'05]

Table

- Motivation
- **Related Work**
- □ Approach
- Relative Content of Entries
- **Given Content** Keyword Propagation
 - **C** Keyword Propagation between a Pair of Entries
 - □ Keyword Propagation across a Complex Structure
- **Experiment**
- **Conclusion and Future Work**

□ In a navigation hierarchy,

A specialized entry corresponds to more constrained concept

As one moves down in a hierarchy, the nodes get more specialized

□ A general entry is less constrained

As one moves up in a hierarchy, the nodes get more generalized.

Intuition

Given two entries, A and B (A is an ancestor of B),

- \Rightarrow Assume
 - A has three keyword (k1, k2, k3) , and
 - B has two keyword (k2, k3)

☆ "Entry A is more general than B" → A being less constrained than B by keywords

☆ If B is interpreted as k2 v k3, then A should be interpreted as k1 v k2 v k3

Less constrained than k2 v k3

☆ Interpreted as the disjunction of keywords

□ In extended boolean model [Salton 83],

□ OR-ness

☆ An entry further away from O better matches the k1 v k2 ☆ Measured as a distance from O

Given two entries, A and B (A is an ancestor of B),

□ Assume

☆ A has three keyword (k1, k2, k3), and ☆ B has two keyword (k2, k3)

□ How much entry A and B represent a disjunct ?

$$\Rightarrow |\vec{A} - \vec{O}| = |\vec{A}|, |\vec{B} - \vec{O}| = |\vec{B}|$$

□ If A is more general than B, then

 $|\vec{A} - \vec{O}| > |\vec{B} - \vec{O}|$

□ Visual representation of the keyword contents

Relative Content

$$R_{AB} = \frac{|\vec{A}|}{|\vec{B}c|} = \frac{|\vec{A}U + \vec{A}c|}{|\vec{B}c|}$$

Measure whether the additional keywords (A_U) make A more general or less general than B_c

Table

- Motivation
- □ Approach
- Related Work
- **Relative Content of Entries**
- **General Keyword Propagation**
 - Keyword Propagation between a Pair of Entries
 - □ Keyword Propagation across a Complex Structure
- **Experiment**
- **Conclusion and Future Work**

□ The purpose of keyword propagation

- □ Enrich the entries in a navigational hierarchy
- The original semantic properties (i.e., relative generality) should be preserved

\Box Propagation Degree, α

Govern how much keyword weights two neighboring entries should exchange

Keyword Propagation between a pair of entries

Propagation Degree, α

Given two entries, *A* and *B*,

 $rac{d}{d} a_i$: weight associated with keywords $k_i \in K_A$

 $rightarrow b_i$: weight associated with keywords $k_i \in K_B$

 \Box A' and B'

☆ Enriched entries after keyword propagation

□ For all $k_i \in K_A$, \Rightarrow If $k_i \in (K_A - K_B)$, then $a'_i = a_i$ \Rightarrow If $k_i \in (K_A \cap K_B)$, then $a'_i = a_i + \alpha b_i$ \Rightarrow If $k_i \in (K_B - K_A)$, then $a'_i = \alpha b_i$

□ For all $k_i \in K_{B'}$ \Rightarrow If $k_i \in (K_A - K_B)$, then $b'_i = \alpha a_i$ \Rightarrow If $k_i \in (K_A \cap K_B)$, then $b'_i = b_i + \alpha a_i$ \Rightarrow If $k_i \in (K_B - K_A)$, then $b'_i = b_i$ WebKDD 2006 Workshop on Knowledge Discovery on

\Box Propagation Degree, α

□ A' and B' are located in a common keyword space $\Rightarrow K_C = K_{A'} = K_{B'} = K_A \cup K_B$

□ After keyword propagation, relative content should be preserved

$$R_{A'B'} = R_{AB}$$

$$R_{A'B'} = \frac{|\vec{A}|}{|\vec{B}c|} = \frac{|\vec{A'}|}{|\vec{B'}|} = R_{AB}$$

Table

- Motivation
- □ Approach
- Related Work
- **Relative Content of Entries**
- **Given Content** Keyword Propagation
 - □ Keyword Propagation between a Pair of Entries
 - > Keyword Propagation across a Complex Structure
- **Experiment**
- **Conclusion and Future Work**

\Box Let H(N,E) be a navigation hierarchy,

- \square N : the set of nodes
- \Box *E* : the set of edges

□ Propagation Adjacency Matrix, M

□ If there is an edge $e_{ij} \in E$, then both (*i*,*j*) and (*j*,*i*) of *M* are equals to α_{ij} (the pairwise propagation degree)

 \Box Otherwise, both (*i*,*j*) and (*j*,*i*) of *M* are equal to 0.

Geodesis Keyword Propagation Process

Given a hierarchy, *H(N,E)*

☆ T : Term-node matrix

☆ *M* : Propagation Adjacency matrix

All diagonal values are 1 and all nondiagonal entries are same with M

General Section Process

Generation Process

Table

- Motivation
- □ Approach
- Related Work
- **Relative Content of Entries**
- **Given Content** Keyword Propagation
 - **Given Service And Anticipation Setween a Pair of Entries**
 - □ Keyword Propagation across a Complex Structure
- Experiment
- **Conclusion and Future Work**

Experiment

Experiment Setup

Data

☆ Yahoo Hierarchy

☆ Computer Science, Mathematics, and Movie directory

Ground truth and Query

 \Rightarrow 10 sample keyword queries

☆ User study (8 users)

r	Relaxed	Differentiated	Strict
irrelevant	0	0	0
partially relevant	1	0.5	0
fully relevant	1	1	1

Experiment

Experiment Setup

Query processing

- ☆N (No Keyword Propagation)
- ☆ KP (Keyword Propagation)
- $rac{l}{\sim} D_t$ and D_n
 - No Keyword Propagation, but context extracted from the whole tree or neighbor
- \Rightarrow KP+ D_t and KP31+D_n
 - keyword Propagation, and context extracted from the whole tree or neighbor

Evaluation measure

☆ P@10

☆ MRR (Mean reciprocal rank of the first relevant document)

☆ Paired t-Test

Keyword Propagation/ No Propagation

	N	KP	Improvement
Relaxed	0.670	0.753	12.27%
Differentiated	0.542	0.612	12.60%
Strict	0.415	0.469	13.10%

P@10

	N	KP	Improvement
Relaxed	0.869	0.930	6.97%
Differentiated	0.869	0.930	6.97%
Strict	0.644	0.730	13.20%

Average MRR

Keyword Propagation/ No Propagation

p-values for	Relaxed	Differentiated	Strict
$KP \ vs. \ N$	0.029	0.031	0.047

P-values for the t-Test

Keyword Propagation/ No Propagation

(a) Relaxed Precision vs. Ranking

(b) Differentiated Precision vs. Ranking

(c) Strict Precision vs. Ranking

Keyword Propagation/ Alternative Context Extraction

Differentiated; $P@10$							
eta/γ	1/0	0.8/0.2	0.6/0.4	0.4/0.6	0.2/0.8	0/1	
N	0.542	_	_	_	-	-	
D_t	-	0.539	0.545	0.579	0.558	NA	
D_n	-	0.532	0.542	0.547	0.564	0.572	
KP	0.612	-	-	-	-	-	
$KP+D_t$	-	0.606	0.607	0.607	0.597	NA	
$KP+D_n$	-	0.611	0.612	0.596	0.584	0.572	

Differentiated: P@10

Differentiated; t-Test							
eta/γ	1/0	0.8/0.2	0.6/0.4	0.4/0.6	0.2/0.8	0/1	
D_t vs. N	-	worse	55.1%	84.4%	63.5%	NA	
D_n vs. N	-	worse	54.0%	65.2%	81.1%	90.5%	
KP vs. N	96.9 %	-	-	-	-	-	
$KP+D_tvsN$	-	96.2%	95.7%	95.7%	90.0%	NA	
$KP + D_n vsN$	-	96.7%	96.8%	91.8%	86.5%	90.5%	

Differentiated: t-Test relative No Keyword Propagation

Effect of the Structural Distance

Statistical Validation of the Ground Truth

□ ANOVA test

- A statistical test to observe the agreement between the assessors
- We Identified two users whose judgments were significantly different from the other 6 users
- When excluding these two users, the user judgments were in agreement

Statistical Validation of the Ground Truth

Differentiated; $P@10$							
eta/γ	1/0	0.8/0.2	0.6/0.4	0.4/0.6	0.2/0.8	0/1	
N	0.538	-	-	-	-	-	
D_t	-	0.547	0.556	0.594	0.571	NA	
D_n	-	0.525	0.537	0.544	0.565	0.573	
KP	0.628	-	-	-	-	-	
$KP+D_t$	-	0.625	0.624	0.624	0.608	NA	
$KP+D_n$	-	0.625	0.625	0.614	0.601	0.573	

Differentiated: P@10

Differentiated; t-Test							
eta/γ	1/0	0.8/0.2	0.6/0.4	0.4/0.6	0.2/0.8	0/1	
D_t vs. N	-	62.0%	71.3%	80.4%	72.1%	NA	
D_n vs. N	-	worse	worse	69.9%	74.9%	91.8%	
KP vs. N	97.3 %	-	-	-	-	-	
$KP+D_t vsN$	-	96.4%	96.6%	96.6%	90.5%	NA	
$KP + D_n vsN$	-	96.4%	96.4%	93.8%	90.5%	91.8%	

Differentiated: t-Test relative No Keyword Propagation

Table

- Motivation
- □ Approach
- Related Work
- **Relative Content of Entries**
- **Given Content** Keyword Propagation
 - **C** Keyword Propagation between a Pair of Entries
 - □ Keyword Propagation across a Complex Structure
- **Experiment**
- Conclusion and Future Work

Conclusion and Future Work

Conclusion

- Present a technique to identify a semantic relationship
- Introduce a relative content preserving keyword propagation technique

□ Future Work

□ Incorporate of other types of semantic cues

☆ Structured-based method

 \Rightarrow Information-based method

Question